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Abstract.   Integrated population models (IPMs) provide a unified framework for simulta-
neously analyzing data sets of different types to estimate vital rates, population size, and 
dynamics; assess contributions of demographic parameters to population changes; and assess 
population viability. Strengths of an IPM include the ability to estimate latent parameters and 
improve the precision of parameter estimates. We present a hierarchical IPM that combines 
two broad-scale avian monitoring data sets: count data from the North American Breeding 
Bird Survey (BBS) and capture–recapture data from the Monitoring Avian Productivity and 
Survivorship (MAPS) program. These data sets are characterized by large numbers of sample 
sites and observers, factors capable of inducing error in the sampling and observation 
processes. The IPM integrates the data sets by modeling the population abundance as a 
first-order autoregressive function of the previous year’s population abundance and vital 
rates. BBS counts were modeled as a log-linear function of the annual index of population 
abundance, observation effects (observer identity and first survey year), and overdispersion. 
Vital rates modeled included adult apparent survival, estimated from a transient 
Cormack-Jolly-Seber model using MAPS data, and recruitment (surviving hatched birds 
from the previous season + dispersing adults) estimated as a latent parameter. An assessment 
of the IPM demonstrated it could recover true parameter values from 200 simulated data sets. 
The IPM was applied to data sets (1992–2008) of two bird species, Gray Catbird (Dumetella 
carolinensis) and Wood Thrush (Hylocichla mustelina) in the New England/Mid-Atlantic 
coastal Bird Conservation Region of the United States. The Gray Catbird population was 
relatively stable (trend +0.4% per yr), while the Wood Thrush population nearly halved (trend 
−4.5% per yr) over the 17-yr study period. IPM estimates of population growth rates, adult 
survival, and detection and residency probabilities were similar and as precise as estimates 
from the stand-alone BBS and CJS models. A benefit of using the IPM was its ability to 
estimate the latent recruitment parameter. Annual growth rates for both species correlated 
more with recruitment than survival, and the relationship for Wood Thrush was stronger than 
for Gray Catbird. The IPM’s unified modeling framework facilitates integration of these 
important data sets.

Key words:   avian demography; Bayesian hierarchical models; Breeding Bird Survey; MAPS program; 
population growth; U.S. Geological Survey; vital rates.

Introduction

Integrated population models (IPMs) are a recent 
development in population ecology, providing a unified 
framework for analysis and inference from multiple pop-
ulation monitoring data sets (Besbeas et al. 2002, 2003, 
Abadi et al. 2010a, Schaub and Abadi 2011, Robinson 
et  al. 2014). IPMs can be used to infer demographic 
parameters, assess population viability, and potentially 
improve the accuracy and precision of parameter esti-
mates (Besbeas et  al. 2005, Schaub and Abadi 2011, 
Hostetler et al. 2015, Lee et al. 2015). To date, IPMs have 
been largely applied to studies that integrate abundance 

data with capture–recapture data from either individual 
sites or for data aggregated across sites (see Schaub and 
Abadi [2011] for a review). In cases where multi-site data 
are analyzed, failing to account for different sources of 
observation error could lead to biased inferences about 
population dynamics (Link and Sauer 1998, Ahrestani 
et al. 2013). The goal of this study was to develop and 
assess IPMs in the context of multi-site independent data 
sets while accounting for sampling and observation error.

IPMs can integrate data from different broad-scale 
avian monitoring programs, such as the North American 
Breeding Bird Survey (BBS; Pardieck et al. 2015) and the 
Monitoring Avian Productivity and Survivorship 
program (MAPS; Saracco et  al. 2010, 2012). The BBS 
provides data on the status and population change of 
>420 bird species (Sauer and Link 2011, Sauer et al. 2014) 
and is a core component of continental-scale bird 
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conservation efforts (e.g., Partners in Flight Species 
Assessment Database; available online).5 The MAPS 
program provides demographic data on >100 species of 
landbirds (Saracco et  al. 2008, DeSante and Kaschube 
2009) and was designed to complement the BBS by pro-
viding data on vital rates. IPMs can incorporate key 
aspects of existing hierarchical models that have been 
developed for independent analyses of BBS and MAPS 
data sets. For example, IPMs can account for spatial, 
temporal, observer (observer identity and first survey 
year), and overdispersion effects in BBS count data using 
a state-space model (Link and Sauer 2002, Sauer and 
Link 2011), and for transients and random variation in 
recapture probability while estimating survival using a 
Cormack-Jolly-Seber (CJS) model (Fig. 1). Applying the 
IPM framework to data sets that vary with respect to the 
spatial scale and distribution of samples would help cali-
brate the BBS and MAPS data sets and potentially 
improve and extend inferences about demographic 
processes beyond the boundaries of their individual 
sampling areas.

Another benefit of using IPMs is their ability to 
estimate latent parameters (Tavecchia et  al. 2009, 
Gimenez et  al. 2012), ”apparent recruitment” in the 
case of this study. Estimates of recruitment are 
important not only because they can be directly eval-
uated for environmental influences, but also because 
they allow a comparison with other vital rates, such as 
survival, to determine the differential influence that 
vital rates have on population growth. The estimates of 
recruitment from IPMs are not subjected to assump-
tions made by other models that estimate recruitment 
using capture–recapture data. For example, Jolly-Seber 
and reverse-time capture–recapture models (Pradel 
1996, Link and Barker 2005) estimate recruitment 
without count data by not conditioning on first capture, 
i.e., the initial capture and the recapture probabilities 
are assumed to be identical. These models thus require 
the rather strict and more-or-less untestable assumption 
of “equal catchability” between marked and unmarked 
animals. Other disadvantages of using such capture–
recapture models are their reliance on a single data set 
to inform both the survival and recruitment compo-
nents, which may be problematic as sampling covari-
ation and model structure can influence estimates of 
demographic parameters (Anderson and Burnham 
1981); and that neither JS nor reverse-time models 
account for bias in survival or recruitment estimates 
associated with transients, biases that can be accounted 
for by hierarchical CJS components in IPMs (Pradel 
et al. 1997, Hines et al. 2003).

The IPM presented here is the first attempt to formally 
integrate MAPS and BBS data within a common mod-
eling framework. It represents an important step for 
North American bird conservation by providing (1) the 
potential for improved estimation (increased accuracy, 

precision, resolution) of abundance, trend, and vital rates 
(survival, recruitment); (2) a means of assessing demo-
graphic contributions to population change based on 
independent data sets; (3) a framework for associating 
environmental covariates of population change and the 
demographic components of population change; and 
(4)  estimates of latent parameters that are not directly 
estimable from either survey.

We used simulations to evaluate the ability of the IPM 
to recover parameter values. We applied the IPM to BBS 
and MAPS data to estimate relative abundances, demo-
graphic rates, and trends for two bird species (Gray 
Catbird and Wood Thrush) within the data-rich New 
England/Mid-Atlantic Coast Bird Conservation Region 
(hereafter BCR30, as defined by the North American 
Bird Conservation Initiative; available online).6 Lever
aging the advantage of estimating a latent parameter, in 
this case recruitment, we highlight the unique framework 
that IPMs provide to compare the influence of different 
vital rates on population dynamics. We also applied an 
overdispersed Poisson regression stand-alone BBS model 
(Link and Sauer 2002) and a modified MAPS stand-alone 
CJS model (Saracco et al. 2012) to data of both species 
with the intention to test whether the IPM estimates were 
an improvement over estimates from the stand-alone 
models.

Fig.  1.  Graphical representation of the population model 
that integrates Breeding Bird Survey (BBS) count data with 
capture–recapture data from the Monitoring Avian Productivity 
and Survivorship (MAPS) program. Parameters within blue 
circles (γ, recruitment rate; ϕ, survival probability; N, index of 
annual population abundance; ω,  observer bias; η,  first-year 
observer bias; ε, observation error) were target parameters, and 
parameters within green circles (p,  recapture probability; 
π, residency probability; and ρ, predetermining residency) were 
nuisance parameters (nuisance parameters here refer to 
parameters that are needed to describe the system, but do not 
have an ecological meaning). The squares represent the data 
(Y, BBS abundance counts; y, MAPS capture–recapture data). 
[Color figure can be viewed at wileyonlinelibrary.com]

5 �http://rmbo.org/pifassessment/ 6 �http://www.nabci-us.org/map.html
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Methods

Data sources

The MAPS program, initiated by the Institute of Bird 
Populations in 1989, is a cooperative network of more 
than 1200 field stations that use constant-effort mist 
netting and banding to monitor birds across the United 
States and Canada (DeSante and Kaschube 2009). The 
typical MAPS station consists of 10 12-m mist nets dis-
tributed across a core study area of approximately 8 ha 
and sampling birds over an area of approximately 20 ha 
(DeSante et al. 2004). Mist nets are operated at these sta-
tions on 6–10  days during the breeding season (see 
DeSante et al. 2004 for additional detail).

The North American Breeding Bird Survey (BBS) is an 
international avian monitoring program designed to 
provide relative abundance and population trend estimates 
for North American birds, and is jointly managed by the 
U.S. Geological Survey, Canadian Wildlife Service, and 
the Mexican National Commission for the Knowledge and 
Use of Biodiversity. Initiated in 1966, the BBS provides an 
annual index of population abundance for more than 420 
bird species. Once each year, birds are counted, during the 
peak of the breeding season (late May or June for most 
regions), at points along more than 3000 road transects, 
referred to hereafter as “routes.” Randomly established, 
the routes are approximately 39.2 km long with roadside 
safety and access issues dictating deviations in length. The 
routes are surveyed by observers, skilled in avian identifi-
cation, who conduct a 3-min count of birds seen within a 
0.4-km radius or heard from any distance at each of 50 
points separated by approximately 0.8-km intervals 
(Bystrak 1981, Robbins et al. 1986, Sauer et al. 2013). The 
total number of individuals of a species seen or heard over 
all 50 points per route in a given year was treated as the 
annual abundance count for that species on that route.

We used available capture histories for adult birds cap-
tured by the MAPS program over a 17-yr period (1992–
2008) from the New England/Mid-Atlantic region, Bird 
Conservation Region 30 (henceforth referred to as BCR 
30; see footnote 6). We matched the available MAPS data 
with BBS count data from the same time period, 1992–
2008, and the same geographic unit, BCR 30 (details of 
species and the exact data analyzed can be found in 
Model testing and application).

Integrated population model

The IPM integrates count data with capture–recapture 
data by modeling the temporal dynamics of BBS counts as 
a first-order Markov process having survival probabilities 
that are simultaneously estimated from MAPS capture–
recapture records (Fig. 1). Within the IPM framework, the 
temporal dynamics of BBS counts were modeled using a 
state-space model, while encounter histories from the 
MAPS program were modeled using a modified Cormack-
Jolly-Seber model (Saracco et al. 2010).

We defined Ns,t as the stratum- (s; the intersection of 
US states and Bird Conservation Regions (BCRs; see 
footnote 6) and year (t)-specific population index esti-
mated by demographic parameters that influence the 
growth of a bird population within a BBS stratum. The 
stratum abundance in year 1, Ns,1, was modeled with a 
Poisson distribution, i.e., Ns,1 ∼ Pois(Λs), where Λs was 
the expected abundance in stratum s during year 1. 
Assuming exponential growth in the populations, 
abundance in a stratum, Ns,t, at time t > 1 was defined to 
be a function of abundance at t  −  1; i.e., abundance 
was  assumed to change as a function of a first-order 
Markovian process. Furthermore, Ns,t is assumed to be 
composed of two components: (1) a survival component 
Ss,t, i.e., the number of individuals that survived from the 
previous year; and (2) a recruitment component Gs,t, i.e., 
the number of new individuals entering the population. 
The combined size of these two components, i.e., the pop-
ulation in a given year, is represented as a function of the 
population size in the previous year and demographic 
rates (Dail and Madsen 2011) 

where ϕt is the apparent annual survival probability, and 
γt is the apparent annual recruitment rate of the popu-
lation. Note that for simplicity and for illustration of our 
basic model, we assume spatially constant vital rates (i.e., 
no s subscripts); however, stratification could be easily 
incorporated into ϕt and γt. As the population surviving 
in a year would be a non-negative integer not greater than 
the maximum abundance of the previous year, we used 
the binomial distribution to model Ss,t (Schaub and 
Abadi 2011). Furthermore, as the apparent recruitment 
Gs,t could be any non-negative integer, it was modeled 
using a Poisson distribution (Besbeas et al. 2002, Kéry 
and Schaub 2012, Hostetler and Chandler 2015). 
Modeling survival and recruitment using binomial and 
Poisson distributions, respectively, ensured demographic 
stochasticity in the model.

As per standard analyses of BBS data (Link and Sauer 
2002, Sauer and Link 2011), counts Yi,j,t were modeled 
using an overdispersed Poisson regression with indexes i 
representing BBS route, t representing time (yr), and j 
representing a unique combination of route and observer. 
As the ability and experience of observers participating in 
BBS counts differ (Sauer et  al. 1994, Link and Sauer 
2002), the observation model of BBS counts accounts for 
two observer effects: (1) a normally distributed zero-mean 
random observer/route effect ωj with precision parameter 
τω (where τω =1∕σ2

ω
); (2) a fixed novice observer effect η 

(start-up-year effect) multiplied by an indicator variable 
I(j,  t) indicating whether it’s the first year (I(j,  t)  =  1) 
or not (I(j, t) = 0) that the observer counted on that route, 
and also contains normally distributed zero-mean random 
overdispersion effect ɛi,j,t with precision parameter τɛ. 

Ss,t|Ns,t−1 ∼Bin(Ns,t−1,ϕt−1)

Gs,t|Ns,t−1 ∼Pois(γt−1Ns,t−1)

Ns,t =Ss,t+Gs,t

}
for t=2,… ,T
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Considering these three effects, the expected value of Yi,j,t, 
denoted by λi,j,t, was modeled as 

Ns,t is the stratum and year-specific population index of 
a bird population within a BBS stratum, and substitutes 
for the stratum-specific year effect found in the typical 
BBS analysis models (Link and Sauer 2002). Although 
observed BBS counts include observer effects and error 
at the scale of the route, the population index, Ns,t, is 
summarized at the scale of the stratum, s, represented 
here as the intersection of US states and Bird Conservation 
Regions (BCRs). This stratum scale summary represents 
the basic unit of inference for standard BBS analyses 
(Sauer and Link 2011) and is a convenient common area 
of aggregation for both BBS and MAPS data.

The estimated annual adult survival rate, ϕt, was for 
resident individuals, i.e., it excludes transient individuals 
with zero probability of recapture after the year of 
marking (Pradel et al. 1997). The model assumes that the 
“alive state,” z, of individual k in time t is a Bernoulli 
process with the probability parameter equal to the 
product of the individual’s residency state, R (0 = tran-
sient; 1 = resident), its alive state in time t − 1 (0, dead or 
permanently emigrated; 1,  alive and available for 
capture), and the apparent survival rate, ϕt 

The residency state of newly marked individuals was 
determined by a residency probability parameter, πt; 

where f(k) indicates the year of marking for individual k. 
Multiple within-season captures ≥10 d apart in the year 
of marking were used to define an observation model for 
residency, such that observed “pre-determined” resi-
dency, was denoted with indicator variable r (0, unknown 
residency status; 1,  observed resident) determined as a 
function of the residency state and probability of prede-
termining an individual as a resident 

Finally, observations of the alive state of individual k 
in time t, c(k, t), were modeled as a function of the true 
alive state and the recapture probability, pk,t: 

where the k represent station-scale variation in p (see 
Saracco et al. 2012 for more details). We defined a logit-
linear model for pk,t to allow for random station-scale 
variation in recapture probability 

whereby the μt represent the fixed annual mean recapture 
probabilities (on logit-scale) and the αsta[k] represent 
random station effects distributed as Norm(0, 1/τα).

We used area-weighting (Link and Sauer 2002) to scale 
up the stratum-scale (BCR  ×  state) Ns,t estimates to a 
composite population index at the BCR level. Estimates 
of population growth were derived as the geometric mean 
of proportional annual changes of the BCR level com-
posite population index (Link and Sauer 1998).

The apparent recruitment rate, γt, is the latent 
parameter estimated by the IPM, i.e., neither BBS nor 
MAPS empirical data provide direct estimates of 
recruitment. The apparent recruitment rate γt represents 
a compound variable, composed of four potential param-
eters: a fecundity rate (number of young produced per 
breeding adult), breeding propensity (either in terms of 
number of individuals breeding or the number of suc-
cessful breeding attempts they have), the apparent sur-
vival probability of these juveniles, and an immigration 
probability (could include young, as well as dispersing 
adults from the previous year and other BCRs). Although 
data from the MAPS program could be used to inform 
local recruitment components, this is an area of ongoing 
research and is not included in the IPM presented here.

The likelihood of the state-space model (Lss) for the 
annual BBS counts is the product of the system process 
(Lsp) and observation process (Lop) models (Fig. 1) 

Similarly, the likelihood for the CJS model (Lcjs) that 
relates MAPS capture–recapture data y to the apparent 
survival ϕ, recapture p, residency r, and predetermining 
residency rho probabilities is 

Combining the likelihood of the state-space model for 
the BBS annual counts and the likelihood of the MAPS 
capture–recapture data would provide a joint likelihood 
for the overall IPM (Lipm) 

Using Bayesian inference, the IPM (see Appendix S1 
for the jags code of the IPM) was fitted to the data with 
the JAGS 3.3.0 (Plummer 2003) software executed using 
the jags function of the jagsUI package (Kellner 2015) in 
the R statistical computing environment (R Core Team 
2016). We assigned vague prior probabilities for both 
survival and recruitment using uniform distributions, 
ϕ

t
∼U(0,1) andγ

t
∼U(0,10); γt,s was a function of popu-

lation size, and therefore had to be numerically small to 
enable realistic estimates of population size. The prior 
probability for fixed novice observer effect was modeled 
as η ∼ Norm(0, 10−6), while the priors for the precision 
hyperparameters for random observer and overdis-
persion effects were modeled as Gamma(0.001,  0.001). 

log (λi,j,t)= log (Ns,t)+ωj+ηI(j,t)+εi,j,t.

z(k,t)|z(k,t−1)∼Bern(R(k)z(k,t−1)ϕt−1).

R(k)∼Bern(πf(k)),

r(k)|R(k)∼Bern(R(k)ρk,f(i)).

c(k,t)|z(k,t)∼Bern(z(k,t)pk,t).

logit(pk,t)=μt+αsta[k]

Lss(Y|N,ϕ,γ,ω,η,ε,τω,τε)=Lop(Y|N,ω,η,ε,τω,τε)

×Lsp(N|ϕ,γ).

Lcjs(y|ϕ,π,ρ,μ,α,τα).

Lipm(Y,y|N,ω,η,ε,τω,τε,ϕ,γ,π,ρ,μ,α,tα)

=Lop(Y|N,ω,η,ε,τω,τε)×Lsp(N|ϕ,γ)

×Lcjs(y|ϕ,π,ρ,μ,α,τ,τα).
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Posterior distributions of the demographic parameters 
and population size were derived from 100,000 simulated 
values from the posterior distribution after a burn-in of 
50,000 samples of the Gibbs sampler. The Markov chains 
were determined to have successfully converged if R hat 
values were <1.1 for posterior estimates of all parameters 
(Gelman and Hill 2006).

Model testing and application

We tested our model using 200 sets of simulated count 
and capture–recapture data. Capture–recapture histories 
over 10 years were simulated using the following prede-
termined parameter values typical for a passerine bird 
captured as part of the MAPS program: apparent sur-
vival ϕ = 0.55, recapture probability p = 0.4, residency 
r  =  0.55, and pre-determining residency ρ  =  0.3. 
Abundance counts were simulated by the BBS state-
space count model using the following parameter values: 
apparent survival ϕ  =  0.55; apparent recruitment rate, 
γt = 0.5; a fixed novice observer effect η = 0.2; a normally 

distributed zero-mean (and a SD of 0.3) random observer/
route effect, ωj  ∼  Norm(0,  0.3); and a normally dis-
tributed zero-mean (and a SD of 0.5) random overdis-
persion effect, ɛ ∼ Norm(0, 0.5) (see Appendix S2 for R 
code of the functions used to simulate the data).

We applied the IPM to BBS and MAPS data on pop-
ulations of two bird species (Gray Catbird, Dumetella 
carolinensis, and Wood Thrush, Hylocichla mustelina) 
inhabiting BCR 30. Over the 17-yr period (1992–2008), 
data for Gray Catbird included capture–recapture his-
tories of 4276 individuals captured at 38 banding stations 
and 1298 counts of abundance from 109 BBS routes, and 
the data for Wood Thrush included capture–recapture 
histories of 1975 individuals captured at 32 banding sta-
tions and 1379 counts of abundance from 114 BBS routes 
(Fig. 2). We compared the estimates from the IPM with 
estimates from stand-alone analyses of the BBS (using 
the hierarchical model described by Sauer and Link 2002) 
and MAPS (using CJS models), to test whether using an 
IPM improved precision and/or measures of central ten-
dency in parameter estimates.

Fig. 2.  The location of transects of the North American Breeding Bird Survey (BBS) and banding stations of the Monitoring 
for Avian Productivity and Survivorship (MAPS) program within the New England/Mid-Atlantic region, Bird Conservation 
Region 30, from which counts (BBS) and capture histories (MAPS) of the Gray Catbird and Wood Thrush were analyzed over the 
time period 1992–2008. [Color figure can be viewed at wileyonlinelibrary.com]

Wood Thrush

Gray Catbird

http://wileyonlinelibrary.com
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Results

Simulations

The results from testing the IPM and the CJS on 200 
different sets of simulated count and capture–recapture 
data (all 200 data sets were simulated using the same/
constant parameter values) demonstrated that the IPM 
accurately estimated all relevant parameters: apparent 
survival, recruitment, and residency probabilities and the 
SDs for all three effects (observer effect, novice effect, 
and over-dispersion effect). The simulations also con-
firmed that the IPM estimates of apparent recruitment 
were unbiased and accurate (see Appendix S3, Fig. S1).

Application to BBS and MAPS data

The mean and 95% Bayesian credible intervals (BCI) 
over the 17-yr period from the IPM and the stand-alone 
implementation of the CJS were similar for parameters 
common to both models (survival, detection, and the two 
residency probabilities; Table 1; see Appendix S3: Tables 
S1 and S2). Likewise, growth rates of the overall popula-
tions of both species in BCR 30 estimated by the IPM 
(Gray Catbird, mean 0.0039, 95% BCI −0.0072, 0.0153; 
Wood Thrush, mean −0.0484, 95% BCI −0.0599, 
−0.0365) were similar to growth rate estimates from the 
stand-alone Link and Sauer (2002) BBS model (Gray 
Catbird, mean 0.0004, 95% BCI −0.0089, 0.0102; Wood 
Thrush, mean −0.0439, 95% BCI −0.0552, −0.0269).

High variation among years over the 17-yr period was 
the main reason for the wide ranges of the 95% BCIs for 
the demographic parameters (Fig. 3). In addition to the 
information of survival rates provided (Table 1), the mean 
of the latent parameter, apparent recruitment, a com-
pound variable that combines fecundity, juvenile survival, 
and immigration, was 0.42 (95% BCI 0.13, 0.75) and 0.46 
(95% BCI 0.12, 0.85) over the 17-yr period for the Gray 
Catbird and Wood Thrush populations, respectively.

The Gray Catbird population in BCR 30 was relatively 
stable over the 17-yr period (mean growth rate of 0.004; 
95% BCI −0.007, 0.015) with peak abundance in 1998 
(Fig. 3a). The increase in Gray Catbird abundance in the 
1997–1998 interval followed from the highest recruitment 
estimate; the year of steepest decline was 2000–2001, a 
period of moderate survival and low recruitment (Fig. 3a). 

The mean negative growth rate (−0.05, 95% BCI −0.06, 
−0.04) for Wood Thrush indicates that the population 
has been reduced to half in BCR 30 region over the 17-yr 
time period, although declines were not consistent over 
the years (Fig. 3b). The two 1-yr intervals with the highest 
population increases were 1999–2000, following a year 
of relatively high recruitment, and 2001–2002, following 
a year of especially high recruitment. The year of steepest 
decline was 2002–2003, a result of relatively low 
recruitment and particularly low survival (Fig. 3b).

Vital rate correlations and contributions  
to population change

Annual apparent survival and apparent recruitment 
were negatively correlated for both species: posterior 
correlations (r) were −0.80 (95% BCI −0.93, −0.58) and 
−0.75 (95% BCI −0.90, −0.52) for the Gray Catbird and 
Wood Thrush populations, respectively. For Gray 
Catbird, annual changes in adult population size were 
more strongly correlated with recruitment (r = 0.40, 95% 
BCI −0.1, 0.74) than with survival (r = 0.10, 95% BCI 
−0.34, 0.55), which was similar to the pattern with the 
Wood Thrush population, for which changes in adult 
population size were also more strongly correlated with 
recruitment (r = 0.52, 95% BCI 0.12, 0.79) than with sur-
vival (r = 0.006, 95% BCI −0.38, 0.42).

Discussion

Understanding the population dynamics of broadly 
distributed species and devising effective strategies for 
their conservation calls for large-scale collaborative 
monitoring efforts and appropriate analytical methods. 
IPMs provide a cohesive framework for analyzing inde-
pendent large-scale monitoring data sets for species col-
lected at multiple study sites across broad spatial extents 
(Besbeas et al. 2005, Abadi et al. 2010a, McCrea et al. 
2010, Schaub and Abadi 2011). To date, there have been 
few applications of IPMs to such data sets, the majority 
of which implemented aggregated data across space, 
potentially biasing estimates due to error associated with 
the observation and sampling processes, and limiting 
inferences about populations to a single spatial scale 
(e.g., Robinson et al. 2014).

Table 1.  The mean and 95% Bayesian credible interval (in parentheses) estimates of demographic parameters from the Integrated 
Population model (IPM) and a modified Cormack-Jolly-Seber model (CJS) of the Gray Catbird and Wood Thrush populations 
found in the New England/Mid-Atlantic region, Bird Conservation Region 30.

Probability

Gray Catbird Wood Thrush

IPM CJS IPM CJS

Survival 0.587 (0.368–0.827) 0.565 (0.361–0.807) 0.505 (0.286–0.787) 0.47 (0.278–0.736)
Detection 0.335 (0.197–0.514) 0.341 (0.199–0.518) 0.457 (0.217–0.712) 0.479 (0.235–0.723)
Residency 0.592 (0.415–0.821) 0.595 (0.418–0.818) 0.564 (0.365–0.837) 0.573 (0.370–0.849)
Pre-residency 0.251 (0.155–0.370) 0.249 (0.154–0.367) 0.431 (0.248–0.643) 0.425 (0.243–0.636)

Note: The IPM uses both BBS count data and MAPS capture history data, while the CJS uses only MAPS capture histories.
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We extended the basic IPM framework to accom-
modate spatial and temporal observer error and overdis-
persion in count data, as well as accommodating spatial 
variation in observations among capture–recapture sites. 
Our model also incorporated spatial stratification in the 
population size index, allowing for inferences about 
abundance at multiple spatial scales. Such stratification 
could be similarly applied to the capture–recapture data 
in future applications of this model.

We included two important vital rate parameters in our 
model: adult apparent survival and apparent recruitment 
(DeSante 1990, Sillett and Holmes 2002). Although the 
recruitment parameter incorporates components of 
reproduction, first-year survival, and immigration, it is 
nevertheless an informative composite metric for evalu-
ating the relative importance of survival and recruitment 
pathways, and it corresponds directly to analogous 
parameters in other capture–recapture models (Jolly-
Seber models, reverse-time models) and population 
dynamics models (Royle 2004, Dail and Madsen 2011, 
Hostetler and Chandler 2015). With our IPM, which esti-
mates recruitment as a latent parameter, we avoid some of 
the potential pitfalls (unrealistic assumptions, sampling 
covariation) that capture–recapture models face, and the 
difficulty that models that only use count data often face 
(insufficient information in the data; Hostetler and 

Chandler 2015) while estimating recruitment (Bellier et al. 
2016). Alternative parameterizations may also enable 
decomposition of recruitment into local and immigration 
components (Hostetler and Chandler 2015, Schaub and 
Fletcher 2015). In addition, age-specific MAPS capture 
data may be incorporated to allow modeling additional 
parameters of the recruitment pathway (e.g., produc-
tivity, first-year survival, immigration; Abadi et al. 2010b). 
Although sampling areas and locations differed between 
MAPS and BBS, we have found that demographic 
parameter estimates can be spatially autocorrelated across 
relatively large scales (e.g., Saracco et  al. 2010, 2012). 
Thus, we suggest that demographic data from MAPS may 
adequately represent spatial scales larger than individual 
sampling areas, and that demographic parameter esti-
mates provided by our IPM may be thought of as repre-
senting some scale intermediate between MAPS and BBS 
sampling scales. We suggest that future development and 
users of this IPM, and for that matter any other IPM, be 
aware that the population unit for which count data are 
collected may not exactly match the population unit 
sampled by capture–recapture methods.

A benefit of estimating the latent parameter, 
recruitment, was that it allows assessing the influence of 
vital rates on the growth of populations. In the pre-IPM 
era, when we could only analyze one type of data at a 

Fig. 3.  Integrated Population Model (IPM) estimates of annual recruitment (shaded boxplots), annual survival (white boxplots), 
and trend (solid lines) in the abundance of the (a) Gray Catbird, and (b) Wood Thrush populations that inhabited BCR 30 from 
1992 to 2008. The dotted lines plot the 95% credible intervals of the estimates of annual abundance. In the boxplots, boxes represent 
50%, whiskers the 95% Bayesian Credible Interval, and the bars the mean of the posterior distributions. Note that there are 16 
annual survival and recruitment probabilities for the 17 years of count data, beginning at t = 2 (1993).

a)  Gray Catbird b)  Wood Thrush
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time, comparing vital rates was only possible as a post-
modeling process. In the case of this study, the ability of 
the IPM to estimate recruitment was an improvement on 
the stand-alone CJS model, which conditions on first 
capture and is therefore unable to estimate apparent 
recruitment (Lebreton et  al. 1992). We found that, for 
both species, variation in annual population growth rates 
were associated more with variation in recruitment rates, 
rather than with variation in adult apparent survival. 
One reason for this could be that the latency of the 
recruitment parameter was flexed to help match the two 
data sets, which is why recruitment, and not survival, had 
a higher relation to growth in both populations. The 
relation of variation in annual growth with variation in 
recruitment was, however, stronger for the Wood Thrush 
than the Gray Catbird population. The importance of 
recruitment processes in driving population change of 
Wood Thrush in this region is supported by findings that 
non-breeding climate and breeding forest loss correlate 
strongly with population change in similarly defined pop-
ulations of this species (see results for populations 7 and 
8 in Rushing et al. [2016]).

A review of IPMs by Abadi et  al. (2010a) indicated 
that simultaneous analysis of disparate data sets using 
IPMs has the potential to improve the precision of 
parameter estimates. We did not find, however, a gain in 
precision in parameter estimates from using the IPM 
compared to the stand-alone implementations of the CJS 
and BBS models. It is possible that the rich data sets 
available for estimating parameters overwhelmed the 
opportunity to improve precision of parameter estimates. 
Alternately, the lack of precision increase could represent 
a spatiotemporal mismatch in sampling between the two 
programs or lack of stratification in the vital rate param-
eters (for simplification, treated as spatially constant 
here).

Since its inception, the MAPS program was intended 
to collect demographic data that would complement 
abundance data from the BBS; however, until now these 
data sets have been treated independently. The IPM 
presented here represents a milestone in the evolution 
of both monitoring programs and should prove to be a 
useful tool for elucidating the dynamics of North 
American landbird species under a unified modeling 
framework. More generally, our approach represents an 
important step in the evolution of IPMs from applica-
tions to local populations or aggregates of populations 
to  fully spatially stratified models that allow inferences 
about population dynamics at multiple scales, while 
accounting for spatial variation in sampling error. Other 
potential extensions of the model include stratification of 
vital rates and inclusion of additional data and param-
eters, inclusion of covariates to understand drivers of 
vital rates, and using environment-vital rate relationships 
to predict future population states and probabilities 
of  quasi-extinction under various climate and land-use 
change scenarios.
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